Reasoning about Bayesian Network Classifiers
نویسندگان
چکیده
Bayesian network classifiers are used in many fields, and one common class of classifiers are naive Bayes classifiers. In this paper, we introduce an approach for reasoning about Bayesian network classifiers in which we explicitly convert them into Ordered Decision Diagrams (ODDs), which are then used to reason about the properties of these classifiers. Specifically, we present an algorithm for converting any naive Bayes classifier into an ODD, and we show theoretically and experimentally that this algorithm can give us an ODD that is tractable in size even given an intractable number of instances. Since ODDs are tractable representations of classifiers, our algorithm allows us to efficiently test the equivalence of two naive Bayes classifiers and characterize discrepancies between them. We also show a number of additional results including a count of distinct classifiers that can be induced by changing some CPT in a naive Bayes classifier, and the range of allowable changes to a CPT which keeps the current classifier unchanged.
منابع مشابه
Tractability of most probable explanations in multidimensional Bayesian network classifiers
Multidimensional Bayesian network classifiers have gained popularity over the last few years due to their expressive power and their intuitive graphical representation. A drawback of this approach is that their use to perform multidimensional classification, a generalization of multi-label classification, can be very computationally demanding when there are a large number of class variables. Th...
متن کاملThe Effect of Bayesian Reasoning Training on the Results of Clinical Reasoning Tests of Interns
Introduction: Clinical reasoning includes a range of thinking about clinical medicine at all stages of patient evaluation. Bayesian theory can be used to refute or confirm differential diagnoses in the clinical reasoning process. In this way, by learning the basic mathematical language of probability in medicine, we can change our beliefs according to new evidence. The aim of this study is to i...
متن کاملIntrusion detection using probabilistic graphical models
In order to defend against extraordinary intelligent attacks in the era of rapidly growing information and technology nowadays, effective and efficient intrusion detection models are needed to detect and prevent intrusion promptly. Bayesian network (BN) classifiers with powerful reasoning capabilities have been increasingly utilized to detect intrusion attacks with reasonable accuracy and effic...
متن کاملSupervised classification with conditional Gaussian networks: Increasing the structure complexity from naive Bayes
Most of the Bayesian network-based classifiers are usually only able to handle discrete variables. However, most real-world domains involve continuous variables. A common practice to deal with continuous variables is to discretize them, with a subsequent loss of information. This work shows how discrete classifier induction algorithms can be adapted to the conditional Gaussian network paradigm ...
متن کاملLearning Bayesian network classifiers by risk minimization
Article history: Received 22 June 2011 Received in revised form 1 October 2011 Accepted 24 October 2011 Available online 29 October 2011
متن کامل